Design of a Pesticide Spraying Quadcopter
Today, coupled with technological development, UAV (Unmanned Aerial Vehicle) systems show an important improvement in civil area applications. UAV systems have active tasks with cost-effective solutions in several areas like defense, logistics, engineering, and agriculture. Especially in agricultural applications, UAV system usage contributes to improvement of the critical parameters of this sector as efficiency and sustainability. Thus, in agricultural areas, improvement and usage of unmanned systems are of importance. In this study, a remote-control rotary wing UAV system that can perform irrigation and spraying and its design, production and application processes are discussed. The designed, verified and all test operations completed UAV system is planned to be used in remote control liquid rejection in the agricultural area.
Unmanned aerial vehicle (UAV).Rotary Wing UAV.SprayingRemote Control UAV.Sustainability
- SHGM, Sivil Havacılık Genel Müdürlüğü, “İnsansız Hava Aracı Sistemleri Talimatı (SHT-İHA)”, Rev. 4, 2020, Ankara.
- SSM, Savunma Sanayi Müsteşarlığı, “Türkiye İnsansız Hava Aracı Sistemleri Yol Haritası (2011-2030)”, 2012, Ankara.
- Kaçar, A., Tok, B., Kahvecioğlu A.C., Albostan, O.,Köse S., İrfanoğlu B. & Arıkan K. B., “Üç Dönerkanatlı ve Döner-Rotorlu İnsansız Hava Aracının Tasarımı”, EMO Bilimsel Dergi, 107-113, 2013
- ICAO, International Civil Aviation Organization, “Air Traffic Services”, Montreal, 2001
- Savaş, T., & Usanmaz, Ö., “İnsansız Hava Aracı Sistemlerinin Ayrılmamış Hava Sahasına Entegrasyonu İle İlgili Mevzuatların Değerlendirmesi” IX. Ulusal Uçak, Havacılık Ve Uzay Mühendisliği Kurultayı. Ankara: Makine Mühendisleri Odası (MMO), 49-61, 2017
- Eurocontrol, “RPAS ATM CONOPS”, Montreal, 2017
- Chunhua, Z ve Kovacs, J. M., “The application of small unmanned aerial systems for precision agriculture: a review. Precision agriculture”, Precision Agriulture, 693-712, 2012
- Ioanna, S. & Tsagaris, A., “The Use of Unmanned Aerial Systems (UAS) in Agriculture”, 7th International Conference on Information and Communication Technologies in Agriculture, Food and Environment. Greece, 730-736, 2015
- Hunt, E. R., Daughtry, C. S. T., Mirsky, S. B. ve Hively, W. D., “Remote Sensing with Simulated Unmanned Aircraft Imagery for Precision Agriculture Applications”, Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 4566-4571, 2014
- Logan, M., Bland, G., & Murray, J., “A Framework for Safe Integration of Small UAS into the NAS”, 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference. AIAA, 1-6, 2011
- Torres-Rua, A., Al Arab, M., Hassan-Esfahani, L., Jensen, A., ve McKee, M., “Development of unmanned aerial systems for use in precision agriculture: The AggieAir experience”, IEEE Conference on Technologies for Sustainability (SusTech), 77-82. 2015
- Jannoura, R., Brinkmann, K., Uteau, D., Bruns, C., & Joergensen, R. G., “Monitoring of Crop Biomass Using True Colour Aerial Photographs Taken from A Remote Controlled Hexacopter”, Biosystem Engineering, 341-351, 2015
- Herwitz, S. R., Johnson L. F., Dunagan, S. E., Higgins R. G., Sullivan, D. V., Zheng, J., Lobitz, B. M., Leung, J. G., Gallmeyer., B. A., Aoyagi, M., Slye, R. E., ve Brass, J. A. , “Imaging from An Unmanned Aerial Vehicle: Agricultural Surveillance and Decision Support”. Computers and Electronics in Agriculture, 44(1), 49-61, 2004