Volume – 3 Issue – 2 Article – 2

Numerical Analysis of Variable Morphing Wing for Improved Aerodynamic Performance of a Predator MQ-1B

Erdogan Kaygan
Girne American University, Department of Aviation Management and Pilotage, Cyprus, Turkey
F IJAST 2022; 3 (2) DOI: 10.23890/IJAST.vm03is02.0202; Language: EN

In this paper, aerodynamic performance benefits of morphing unmanned
aerial vehicle’s wing concepts are investigated. A Predator MQ-1B with
variable wing structure was utilized for this study. The concept consists of
variable twist (-10°< θ <10°, in steps of ±2.5°) and wing sweep (0°< θ <30°, in
steps of +10°) to illustrate morphing wing’s performance benefits. All
computations were performed with Athena Vortex Lattice modelling with
varying degrees of twist and sweep angle considered. The results obtained
from this work show that if morphing wings adapted to the Predator MQ-1B,
it will provide significant performance benefits and also offer a great
opportunity to reduce fuel consumption.

Aerodynamics
Morphing
Predator
Sweep
Twist

  1. Abdulrahim, M. et al. (2005) ‘Flight Testing A Micro Air Vehicle Using Morphing For Aeroservoelastic Control’, Journal of Aircraft, 42, No 1(JanuaryFebruary), pp. 1–17. doi:10.2514/6.2004-1674.
  2. AIRBUS (2020) AlbatrossOne: A revolutionary approach to aircraft wing design. Available at: https://www.airbus.com/innovation/futureconcepts/biomimicry/albatrossoe.html (Accessed: 9 July 2021).
  3. Austin, R. (2010) Unmanned Aircraft Systems – UAVs design, development and deployment. Aerospace series, Wiley and Sons Ltd publication.
  4. Barbarino, S. et al. (2011) ‘A Review of Morphing Aircraft’, Journal of Intelligent Material Systems and Structures, 22(9), pp. 823–877. doi:10.1177/1045389X11414084.
  5. Barbarino, S. et al. (2014) ‘A review on shape memory alloys with applications to morphing aircraft’, Smart Materials and Structures, 23(6), pp. 063001–. doi:10.1088/0964-1726/23/6/063001.
  6. Bourdin, P., Gatto, A.. and Friswell, M. (2006) ‘The Application of Variable Cant Angle Winglets for Morphing Aircraft Control’, in 24th Applied Aerodynamics Conference. American Institute of Aeronautics and Astronautics, Inc, pp. 1–13.
  7. Bourdin, P., Gatto, A. and Friswell, M.I. (2007) ‘Potential of Articulated Split Wingtips for Morphing-Based Control of a Flying Wing’, in 25th AIAA Applied Aerodynamics Conference, pp. 1–16.
  8. Culick, F.E.C. (2003) ‘The Wright Brothers : First Aeronautical Engineers’, 41(6), pp. 8–11.
  9. Falcao, L., Gomes, A. a and Suleman, A. (2011) ‘Design and Analysis of an Adaptive Wingtip’, in 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Denver, Colorado: AIAA.
  10. Force., D. of A. (2009) ‘Airfield Planning and Design Criteria for Unmanned Aircraft Systems (UAS)’, 4, pp. 1–51.
  11. Galantai, V.P. (2010) ‘Design and Analysis of Morphing Wing for Unmanned Aerial Vehicles‘, University of Toronto, Canada
  12. Gandhi, F. and Anusonti-Inthra, P. (2008) ‘Skin design studies for variable camber morphing airfoils’, Smart Materials and Structures, 17(1), p. 015025. doi:10.1088/0964-1726/17/01/015025.
  13. Gomez, J.C. and Garcia, E. (2011) ‘Morphing unmanned aerial vehicles’, Smart Materials and Structures, 20(10), p. 103001. doi:10.1088/0964-1726/20/10/103001.
  14. Guerrero, J.E., Sanguineti, M., and Wittkowski, K. (2020) ‘Variable cant angle winglets for improvement of aircraft flight performance.’ Meccanica 55, 1917–1947.
  15. Gundlach, J. (2012) ‘Overview of Unmanned Aircraft Systems’, Designing Unmanned Aircraft Systems, 2(4), pp. 1–23. doi:10.2514/5.9781600868443.0001.0023.
  16. Jha, A.K. and Kudva, J.N. (2004) ‘Morphing Aircraft Concepts, Classifications, and Challanges’. Edited by E.H. Anderson, 5388, pp. 213–224. doi:10.1117/12.544212.
  17. Kaygan, A., Gatto, E. (2018) ‘Structural Analysis of an Active Morphing Wing for Enhancing Unmanned Aerial Vehicle Performance’, International Journal of Aerospace and Mechanical Engineering, 12(10), pp.948–955.
  18. Kaygan, E. and Gatto, A. (2014) ‘Investigation of Adaptable Winglets for Improved UAV Control and Performance’, International journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, 8(7), pp. 1281–1286.
  19. Kaygan, E. and Gatto, A. (2015) ‘Computational Analysis of Adaptable Winglets for Improved Morphing Aircraft Performance’, International Journal of Aerospace and Mechanical Engineering, 9(7), pp.1127–1133.
  20. Kaygan, E. and Gatto, A. (2016) ‘Development of an Active Morphing Wing With Adaptive Skin for Enhanced Aircraft Control and Performance’, in Greener Aviation 2016. BRUSSELS, BELGIUM.
  21. Kaygan E., Ulusoy C. (2018), ‘Effectiveness of Twist Morphing Wing on Aerodynamic Performance and Control of an Aircraft‘, Journal of Aviation, 2 (2), 77- 87. DOI: 10.30518/jav.482507
  22. Kaygan E. (2020), ‘Aerodynamic Analysis of Morphing Winglets for Improved Commercial Aircraft Performance‘, J. Aviat.4 (1), 31-44.
  23. King, B., Woods, S. and Friswell, M.I, (2015) ‘The Adaptive Aspect Ratio Morphing Wing: Design Concept and Low Fidelity Skin Optimization’, pp. 1–4.
  24. Kudva, J. N., Martin, C. A., Scherer, L. B., Jardine, A. P., McGowan, A. R., Lake, R. C., Sendeckyj, G. P., and Sanders, B.P. (1997) ‘Overview of DARPA/AFRL/NASA Smart Wing Program’, in Jacobs, J.H. (ed.). Bellingham, WA: SPIE Proceedings, pp. 230–236.
  25. Kudva, J.N. (2004) ‘Overview of the DARPA Smart Wing Project’, Journal of Intelligent Materials Systems and Structures, 15(4), pp. 261–267. doi:10.1177/1045389X04042796.
  26. McRuer, D. and Graham, D. (2004) ‘Flight Control Century: Triumphs of the Systems Approach’, Journal of Guidance, Control, and Dynamics, 27(2), pp. 161–173. doi:10.2514/1.4586.
  27. Min, Z., Kien, V.K. and Richard, L.J.Y. (2010) ‘Aircraft morphing wing concepts with radical geometry change’, IES Journal Part A: Civil and Structural Engineering, 3(3), pp. 188–195. doi:10.1080/19373261003607972.
  28. Olympio, K.R. et al. (2010) ‘Design of a Flexible Skin for a
    Shear Morphing Wing’, Journal of Intelligent Material Systems and Structures, 21(17), pp. 1755–1770. doi:10.1177/1045389X10382586.
  29. Phillips, W.F. (2004) ‘Lifting-Line Analysis for Twisted Wings and Washout-Optimized Wings. ‘ Journal of Aircraft vol. 41, no. 1 128-136.
  30. Predator, M.-1 (2015) MQ-1 Predator Air Force Photos. Available at: https://www.af.mil/News/Photos/igphoto/2000597903/mediaid/4705/ (Accessed: 16 June 2021).
  31. Prisacariu, V., Boscoianu, M. and Cîrciu, I. (2013) ‘Morphing wing concept for small UAV’, Applied Mechanics and Materials, 332(July), pp. 44–49. doi:10.4028/www.scientific.net/AMM.332.44.
  32. Prisacariu, V., Boşcoianu, M. and Cîrciu, I. (2017) ‘The effect analysis of the morphing concept on the small swept flying wings’, MATEC Web of Conferences, 121, pp. 1–8. doi:10.1051/matecconf/201712101011.
  33. Babigian R., Hayashibara,S. (2009), ‘Computational Study of the Vortex Wake Generated by a ThreeDimensional Wing with Dihedral, Taper, and Sweep‘, 27th AIAA Applied Aerodynamics Conference, no. June, pp. 1–13.
  34. Saffman, P. G.(1992) ‘Vortex Dynamics‘ Cambridge. England, U.K.: Cambridge Univ. Press.
  35. Smith, D. D., Lowenberg,M. H., Jones, D. P., Friswell, M. I. and Park, S. (2012) ‘Computational and Experimental Analysis of the Active Morphing Wing Concept‘, 2012, pp. 1–9.
  36. Thill, C. et al. (2008) ‘Morphing skins’, (3216), pp. 1–23.
  37. Weisshaar, T. a. (2013) ‘Morphing Aircraft Systems: Historical Perspectives and Future Challenges’, Journal of Aircraft, 50(2), pp. 337–353. doi:10.2514/1.C031456.
  38. Weisshaar, T.A. and Challenge, T.H.E.M. (2006) ‘Morphing Aircraft Technology – New Shapes for Aircraft Design’.
  39. Ying Shan et al. (2008) ‘Variable Stiffness Structures Utilizing Fluidic Flexible Matrix Composites’, Journal of Intelligent Material Systems and Structures, 20(4), pp. 443–456.doi:10.1177/1045389X08095270.
Scroll to Top